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-- Abstract

Performance measurement and monitoring tools are indispensable for research and application develop-
ments on a parallel system. To be effective, such tools must be accurate, nonintrusive. efficient. and easy
to understand. Private-memory MIMD machines present special challenges, especially due to the
amount of data that must be gathered and analyzed. as well as the communication support required to
manage these data.

This paper describes the iwneter, a real-time and interactive parallel software monitor for MFLOPS
performance. Implemented for the iWarp system, a private-memory multicomputer. the iwmeter is com-
posed of three independent units: the samplibng units, the collection unit. and the reporting unit. Each
sampling unit samples the user's program in each processor in a random fashion. The collection unit
collects the data gathered by each individual sampling unit, and the reporting unit processes and reports
the data to the user. We conclude the paper with an evaluation of the iwineter's accuracy.
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1. Introduction

Measuring and monitoring parallel system performance has always been an interesting issue. After all, one
important justification for a parallel system is to obtain high performance. Software tools to monitor the sys-
tems' performance are indispensable for research and application developments on these systems.

Debugging for performance in a parallel system is hard for several reasons. First, what kind of data is needed?
One measure of performance is the number of floating point operations per second (MFLOPS). Memory
access count or disk I/O access is another. Secondly, for each kind of data, there is a series of further questions

that must be addressed. Who generates the data? How does the tool get the data? How does the tool present the
data to the user? How intrusive is the tool? Data generations, data movements and collections, data processing
and presentations, and the level of intrusiveness are several aspects of a software monitoring tool.

Currently, most performance debugging is done by measuring the MFLOPS. The measurement is done by
explicitly inserting timing calls in the source program to time its execution. Provided that the number of float-
ing point operations in the program is known a priori, this approach will give the user the average MFLOPS
number. Such a priori knowledge of the number of floating point operations, however, is not always available,
or if it is available, it may not be accurate. Moreover, if floating point unit utilization is the objective of the
measurement, this approach is insufficient, since the floating point unit can be used for non floating point oper-
ations, and the compiler may generate such code. Lastly, this approach only reports one number: the average
performance; an application may have peaks and valleys of performance, and to fine tune an application, the
user needs a tool that reveals where the peaks and valleys occur.

Learning from the sequential programming world, we can alternatively annotate the programs to gather perfor-
mance data that is replayed or analyzed at a later time (pixie is one such tool). In a parallel system, or even
worse, in a massively parallel system, the amount of data to be post-processed is enormous. Moreover, these
data are scattered in all participating processors, and they need to be writtea into one or more files accessible to
the user. Such a tool would incur a significant overhead on the interconnection network of the processors to
pass the data around, presumably to a front end system, as well as overhead on the network outside the parallel
system and overhead on the file system to actually write the data out to files. On top of that, if implemented by
annotating the program at the basic block level, as is done in pixie, the size of the program significantly
expands (> 2 on average for pixie), and the performance is severely degraded. Thus, we need a tool that
monitors performance in real time.

Another aspect of a software monitoring tool is the level of intrusiveness of the tool. There are several ways a
software monitoring tool can be intrusive to the program being executed. Direct intrusion comes from the fact
that some resources are required for the tool; at the very least, the tool occupies some space in memory,
requires CPU cycles to execute, and requires communication channels and bandwidths to move and collect
data. Additionally, the existence of a measurement tool may actually change the behavior of the parallel pro-
gram being executed; a program with processors communicating with each other, for example, may see a dif-
ferent waiting pattern due to the existence of a monitoring tool.

In these days of extensive networking, it is rare to see a stand alone computer system, especially a parallel sys-
tem. In fact, a parallel system may have another computer serving as its front end, and it may be connected to
different kinds of network. For example, a SunOS machine serves as the front end of an iWarp system, which
is also connected through a HiPPI network to other parallel computers and supercomputers. The user, mean-
while, usually sits on his workstation that also sits on the local network. A performance monitoring tool must
be able to work in this networking environment, allowing the user to monitor the performance of a parallel sys-
tem from his workstation.

The iwmeter is a real-time, parallel software monitor designed to address these concerns. It is currently imple-
mented to measure MFLOPS performance of the iWarp system. We choose MFLOPS performance because it
is an important performance number to know, it can illustrate the features of the design and implementation of
the tool, and it is easy to measure. Other types of measurements that can be derived by examining the instruc-
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tions being executed can be easily adapted into the iwmeter framework. In a very short time, we have built on
top of the iwmeter framework the MBYTIEmeter, a tool that measures the interprocessor data bandwidth across
the iWarp system.

This paper describes the design, implementation, and evaluation of the iwmeter. Section 2 briefly describes
features of the iWarp system that are relevant to this paper. Section 3 explains the design requirements of the
tool. In Section 4 and 5, we discuss more details about the architecture of the iwmeter and various performance
monitoring and implementation issues. Section 6 describes the evaluation of the tool, and we conclude this
paper in Section 7. Appendix A provides an example of how to use this tool, and appendix B shows a screen
dump of the user interface of the iwmeter.
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2. The iWarp system

The iWarp component has been previously described in (2]. In this section we briefly recalls aspects of the sys-
tem that are relevant to this paper.

The iWarp macroarchitecture supports two kinds of instructions: short and long (called the C&A instructions).
A short floating point add or multiply takes 2 clock cycles for single precision or 4 clock cycles for double pre-
cision. A C&A instruction contains one floating point add and one floating point multiply - each takes 2 or 4
clock cycles to execute, depending on whether it is single or double precision. The addition and the multiplica-
tion are executed concurrently. Thus, a 20 MHz iWarp processor running all single precision C&A instructions
has a peak performance of 20 MFLOPS. This variation in floating point instruction times complicates the com-
putation of the MFLOPS performance. If all floating point instructions were executed in a fix amount of time,
say I clock cycle, then the MFLOPS number is simply the number of floating point instructions executed in
one second. This is no longer sufficient. Instead, as we elaborate further in section 5.2. under the heading of
sampling issues, we must now consider the contribution of each floating point instruction to the overall float-
ing point performance of the processor.

An iWarp processor supports single-step program execution, allowing us to examine each instruction being
executed. Each processor also has 2 timer registers, each with an 8 clock cycle resolution; the contents of these
two registers are automatically decremented by one every 8 clock cycles. The run time system provides sup-
port for user-level event handlers, and these registers can be used to trigger an event. These registers and the
user event handler mechanism allow us to interrupt the program execution at various time intervals, and to per-
form various computations during each interrupt. A user event handler can be written in C (C-locale event han-
dler) or in iWarp assembly language (asm-locale). The overhead associated with servicing an interrupt using a
C-locale event handler can be as high as 500 clock cycles, whereas using an asm-locale event handler, the
overhead is approximately 100 clock cycles.

The iWarp processor supports multiple logical channels between adjacent nodes. These logical channels can be
used as building blocks to build communication pathways, which in cum can be used as building blocks to sup-
port various communication models such as a message passing system. Additionally, there is a network of
slow wires (the SRU) running at 1 MHz clock rate connecting the processors. This wealth of communication
supports presents both an opportunity and a challenge. A performance measurement tool now has at its dis-
posal a set of communication models and resources that it can use to transfer data. At the same time, however,
such a tool is required to be robust and supportive of as many communication models as practically possible.

The iWarp system is organized as a torus, and this torus is connected to a Sun host machine through an SIB
processor. The iWarp run time system provides support for remote procedure calls (RPC) from the host
machine to the processors, allowing us to perform various operations such as depositing and examining certain
memory locations on the processors.

Aooession For
ITIS GRA&I
DTIC TAB 0
Unannoucced 0
Jffstifloa 'n .

? Avail and/or
plat Special



pa.. 4

3. Design requirements/goals

The driving requirement for a performance monitoring tool such as the iwmeter is nonintrusiveness. The desire
to be nonintrusive affects the accuracy, the efficiency, and the usefulness of the tool.

3.1. Accuracy

A performance measurement tool is accurate if the numbers reported by the tool are the exact, actual numbers.
In the case of measuring the MFLOPS of a program executing on a processor, an accurate tool reports the
exact count of floating point operations per second that the processor is executing. Since an inaccurate mea-
surement tool can do more harm than no measurement at all, the accuracy of the numbers reported is extremely
important.

We can obtain exact count of floating point instructions executed if we can afford the luxury of single-stepping
the program execution. The overhead incurred by this approach, however, is prohibitively expensive. Each
instruction of the user program executed is accompanied by hundreds of clock cycles spent on the interrupt.
This is true for both uniprocessor and multiprocessor systems. The effect of the overhead, however, is exacer-
bated in a multiprocessor system when processors need to communicate and synchronize with one another.

Since we are constrained by the desire to be nonintrusive, we can only afford to sample the user program, and
based on the sample, we estimate the characteristics of the entire population of instructions in the user pro-
gram. We can employ statistical methods to obtain the estimate as well as to measure the accuracy of our esti-
mate.

The accuracy of our estimates depends on the sample size, which is related to the number of times we interrupt
the program execution. To be more accurate, we need to interrupt more. On the other hand, the level of intru-
siveness of the tool depends on the frequency we interrupt the program execution. To be less intrusive, we
need fewer interrupts. The iwmeter must resolve this trade off, and find the balance point in which the accuracy
is acceptable while maintaining nonintrusiveness.

3.2. Efficiency

A performance measurement tool occupies some space in memory, requires CPU cycles to execute, and
requires communication channels and bandwidths to move and collect data. An efficient tool requires as little
of these resources as possible.

On a system like the iWarp system, where the amount of memory available per processor is relatively small,
the space efficiency constraint is important. The approach of annotating every basic block, for example, will
add a few instructions per basic block, resulting in a significant increase in the space requirement of the user
program.

The performance measurement tool must use as few communication resources as possible. Inefficient use of
communication resources can prohibit the use of the tool for certain programs. For example, in the iWarp sys-
tem, there are 20 communication queues per processor, 4 of which are dedicated to the run time system. If the
tool requires 2 queues per processor, the user program is left with 14 queues. Certain programs built on top of
certain communication models (e.g. hypercube) cannot run using only 14 queues.

Additionally, the usage of communication resources is closely related to the communication model used to
support the tool. This affects the overall overhead of the tool on the executing program. The total amount of
overhead is also related to the number of times the tool can interrupt the executing program, thus affecting the
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accuracy of the measurement.

The tool must require as few compute cycles as possible. This requirement differs from the communication
resource efficiency requirement in that inefficiency here does not result in the monitor not being usable for
some programs. Instead, inefficient implementation of a performance monitoring tool results in higher over-
head, which in turn affects the number of times the tool can interrupt the program, and thus the accuracy of the
measurement.

3.3. Usefulness

A good tool is a tool that gets used. To be useful, there are several characteristics that are desirable in a perfor-
mance measurement tool:

3.3.1. Robustness

A performance monitoring tool must support all programming models supported in the system. For example,
the iWarp system supports various communication models, each with its own performance characteristics and
resource requirements. It is desirable that the performance monitoring tool be capable of working with any
program, regardless of which communication model the program uses. It is also desirable that the tool be com-
piler independent. The tool should be able to measure the performance of a program that is compiled with the
iWarp C compiler as well as that compiled using the iWarp Fortran compiler.

3.3.2. Ease of use and understanding

A performance monitoring tool is easy to use if it requires the user to make no or very little modifications to
the user's program. Ideally, the user should be able to monitor the execution of any program that has been
compiled for the system. This, however, requires that some part of the tool be part of the operating system/run
time system, because the tool may need to interrupt execution while the application is making a system call. If
the user must modify the program to be measured, it is desirable that the modification be simple and straight-
forward.

As we mentioned in the introduction, the amount of data that a performance measurement tool in a parallel
system must process and present to the user can be enormous. If each processor gathers the performance infor-
mation of the program it is executing, then this information, from all participating processors, must be col-
lected by some part of the tool to be presented to the user. The tool must be able to select, or to allow the user
to select, only the appropriate information to be displayed to the user. These options should be presented to the
user in an easy to understand manner.

Furthermore, since the user is most likely sitting in a network environment, a performance monitoring tool
must also work properly in the user's network environment. It is also desirable to have the tool conform to the
execution model of the user's network environment. A graphical user interface and the X Windows program-
ming model provide a mechanism towards satisfying these last two requirements.
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4. Architecture of the iwmeter

In this section we describe the architecture of the iwmeter and the reasons why we chose such a design.

4.1. Components of iwmeter

Logically, there are three components that comprise the iwmeter

A sampling unit (SU): This unit is responsible for sampling each processor and count the number of
each kind of floating point instructions that the processor has executed. This unit is logically placed
in each of the participating processors, so there will be as many sampling units as there are partici-
pating processors.

* A collection unit (CU): This unit is responsible for gathering from all processors the floating point
counts that each processor has computed.

* A reporting unit (RU): This unit is responsible for reporting the performance measured to the user.
This unit needs to be placed on a processor that can communicate directly both to the collection
unit and to the user's workstation.

The separation of the CU from RU is necessitated by the possibility of mapping the CU and the RU into two
different locations. As will be illustrated in the discussion on interaction models below, the CU may reside on
an iWarp processor or the Sun front end, whereas the RU will be sitting on the user's workstation. In one of the
models, this distinction also allows multiple RUs to attach to one CU, allowing multiple users monitoring the
program execution without incurring additional sampling overhead.

4.2. Interaction models

Based on how closely these three units are interacting with each other, we can have the following models:

4.2.1. A tightly-coupled master/slave model.

In this model, the three units tightly interact, with one master, the RU, as the driver that triggers the CU, which
in turn triggers the SU. The RU is the highest master, and the CU serves as its slave. In turn, the CU becomes
the master of the SUs. Whenever it needs to update its report to the user, the RU will send a request to the CU,
which in turn will send a request to trigger the SU. The SU will sample the user program and report whether it
is a floating point instruction or not. The CU can issue these requests multiple times to the SU, gather the count
from all SUs, and compute the individual processor and the array's performance measurement before satisfy-
ing the RU's request. Issuing multiple CU requests to satisfy one RU request enables the CU to report a mea-
surement that is more accurate than simply issuing one request.

The main advantage of this model is that the user program only gets interrupted as often as the user wants the
performance measure to be updated. A direct consequence of this benefit, however, is the loss of accuracy due
to small sampling rate (the upper bound of which is determined by the overhead associated with sending the
request from the CU to the SU). Additionally, the CU needs to broadcast one request per sampling, resulting in
a higher communication overhead per sampling rate. A Unix signal-based implementation of the RU, which
results in an overhead in the order of milliseconds, renders this approach entirely incapable of providing high
enough a sampling rate to provide a reasonable accuracy.
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4.2.2. A closely-coupled master/slave model.

The essential difference between this model and the previous model is that the CU is rot triggered by the RU.
Instead, the CU independently samples the user program and maintains its floating point operation count
regardless of whether or not there is a request from the RU. It is still a slave of the RU, because it needs to ser-
vice the RU's request for the floating point operation count when such a request arrives.

The most important advantage is that in this model, the collection rate is completely independent from the
reporting rate. That is, this model allows for a higher sampling rate, resulting in a higher accuracy. The only
disadvantage of this model is that, compared with the tightly-couple model above, now the user program gets
interrupted more often by the SU.

4.2.3. A loosely-coupled master/slave model.

If we apply the method that takes us from the first model to the second model again, we can loosen the cou-
pling of these units one more step. Instead of having the SUs triggered by the RU, this model lets the SUs
become more independent. In this model, each SU independently samples the user program, without waiting
for a trigger from the CU; and the CU updates its performance data by independently issuing requests to the
SU, without waiting for a trigger from the RU. When a request from the RU arrives, the CU services the
request with the performance data that it has been collecting.

Reporting Unit Collection Unit Sampling Units

Figure 1. A loosely-coupled master/slave architecture

There are several advantages of this model. The most important one is that in this model, the sampling rate is
completely independent from the collection rate. That is, this model allows for a very high sampling rate.
resulting in high aLcuracy. The sampling rate can be as high as the equivalent of single stepping the system.
and the sampling unit can proceed without incurring much communication overhead inside the parallel system.
Outside of the parallel system - that is, between the parallel system (and its host machine) and the user's work-
station) - communication overhead is only incurred as often as the user wants the performance measure to be
updated. Furthermore, since the RU sits on a processor that can talk to both the user and the CU, this model
now allows multiple RUs to connect to one CU. The disadvantage of the SU interrupting the user program
more often than that of the tightly-coupled model above is still true.

This last model is superior to the other two models. Thus, the iwmeter is implemented based on a loosely-cou-
pled master/slave model.
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5. Performance measurement and implementation issues

This section describes various performawc measurement and implementation issues.

5.1. Component implementations

The components of the iwmeter awe implemented as follows:

"The sanpling units: Each SU is a user-level program, implemented as a library, that resides in each
participating processor. It is implemented using the user event-handler mechanism supported by the
iWarp run time system. The initialization routine of the iwmeter installs the SU as an event handler,
and sets the value of one of the two timer registers mentioned in section 2. The SU interrupts the
execution program as follows: When the value of the register goes to zero, a timer event is raised,
and the SU is invoked to handle the event The SU samples the instruction pointed to by the pro-
gram counter when the event is raised, updates the counts of floating point instructions accordingly,
and resets the value of the timer register for the next sampling.

"* The collection unit: The CU executes on the host machine that is connected to the iWarp system. It
communicates to each of the SUs in the participating processors to obtain the floating point counts
that have been executed on each processor.

"* The reporting unit: The RU executes on the user's workstation that can connect through the net-
work to the iWarp host machine. It obtains the data from the collection unit, and it processes and
displays the performance measures to the user through an X-based interface.

In the current implementation, the SU categorizes each instruction being sampled based on its contribution to
the floating point performance, as will be described in detail in the next section. To measure other performance
characteristics of a program, instead of the MFLOPS performance, the only change required is in the way each
instruction being sampled is categorized. For example, to convert the iwaeter into a tool that monitors register
usages, the SU will need to categorize each instruction it samples based on the registers used by the instruc-
tion.

5.2. Sampling issues

As described above, each processor's program has its own SU. The SU interrupts the user program at a certain
time interval, which can be statically or dynamically chosen, and examines whether the last instruction exe-
cuted before the interrupt is a floating point instruction or not. We can view the sampling process as follows.

To get an exact count of floating point instructions executed, we need to single-step the user program and count
how many floating point instructions are being executed. If we suppose that a processor executes the sequence
of instructions S = <so, sI .... , SN> in one second, we can partition S into equivalence classes based on certain
criteria on the instructions, such as each instruction's contribution to the MFLOPS performance of ihe proces-
sor. To measure the floating point performance of an iWarp processor, we need three equivalence classes:

1. instructions that contribute zero floating point operation per clock cycle (call it N,;,, - ý,ich corre-
spond mostly to non-floating point operations;

2. instructions that contribute one half floating point operation per clock cycle(M I), corresponding to
short floating point instructions such as f add and fmul that take 2 clock cycles each and double
precision C&A instructions that execute 2 floating point operations in 4 clock cycles;

3. instructions that contribute one floating point operation per clock cycle (M2), corresponding to sin-
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gle precision C&A instructions that execute 2 floating point operations in 2 clock cycles.

Note that for the sake of simplicity, we ignore instructions that contribute 1/4 of floating point operation per
clock cycle or less (such as a double precision floating point add or multiply or a floating point divide). The
true floating point performance of the processor is then given by the following formula:

t(MO) t(Ml) t(M2)Wt i(S) 0 + w1(7+S) 2 (tS)

where t (A) is the time spent executing the sequence of instructions A, and the weights wi's correspond to each
equivalence class's contribution to the floating point performance of the processor, i.e. wo=O, w1=10, and
w2=20 MFLOPS for a 20MHz iWarp system. For such a processor, if all instructions executed were short float-
ing point instructions, the performance of the iWarp processor is 10 MFLOPS; if all of them are single preci-
sion C&A instructions, the performance is 20 MFLOPS.

Since we do not have the luxury of single-stepping the user program without severely degrading the perfor-
mance of the program by one or two oaders of magnitude (servicing an interrupt will cost several hundred
cycles), we need to do a sampling of the instructions being executed. That is, we would like to sample a subse-
quence R = <ro, rt ... , rk> of S, and partition the sample set into equivalence classes Mo, M1, and M2 using the
same criteria used above to partition S. and compute the weighted average of the sample using a similar for-
mula:

t(MO) t(M1) t(M2)
X = WO () +(wRR + w2 R

where the weights w's are the same as above. We use x to estimate gt.

How good is this estimate? Each of the sizes of the equivalence classes above is a random variable; it is a count
whose value depends on what instruction is being executed at the time we interrupt the processor. However,
these random variables are not independent; categorizing a sampled instruction into one class denies the other
two. The value of our estimate is bounded below by 0 (all instructions are non-floating point instructions) and
above by 20 MFLOPS (all instructions are single precision C&A instructions).

Intuitively, the more we sample, the more accurate our estimate is. Hoeffding[5] quantifies this intuition in the
following inequality:

where k is the sample size, a and b are the lower and upper bounds, respectively. This inequality makes no
assumption about the distribution of the random variables (i.e. no assumption about the distribution of the
instructions being executed nor about the time intervals we perform the sampling). It provides us with a lower
bound on the probability that our estimate - is within r from the true mean g.

If we want to have an estimate that has a probability of (i - 8) to be within c from the true value, then we need
a sample of size:

k = (b-a)2 I 2

2 F_2 In9

The formula above implies that with a sample size of approximately 1,100 instructions per second, there is a
99% chance that the iwmeter reports an MFLOPS performance that is within I MFLOPS from the true pertor-
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mance of a program executing on a single iWarp processor. (Correspondingly, the MFLOPS performance num-
ber reported is within 64 MFLOPS of the true performance of a program running on a 64 processor iWarp
system.)

Since servicing an interrupt costs up to 500 cycles (using a C-locale event handler), and the sampling routine
itself takes approximately 125 cycles, the cost of this sampling is approximately 3% of the total 20 MFLOPS
computational power available per processor. The following table describes the various combinations of error
values, the number of samples required to obtain each of the error value, and the total cost to the user program
as a percentage of the total 20 MFLOPS computational power available (each sample costs approximately 625
clock cycles):

Error Sample Size Total Cost Sample Size Total Cost

(MFLOPS) (p = 0.95) (p = 0.95) (p = 0.99) (p = 0.99)

0.25 11,800 36.88% 17,000 53.12%

0.50 3,000 9.38% 4,200 13.13%

1.00 740 2.31% 1,100 3.44%

Table 1: Sample sizes and total costs for certain error and probability values.

This table suggests that we can perform sampling at a very reasonable cost and still maintains a high degree of
accuracy. In fact, for the iWarp system, implementing the event-handler in assembly language (using asm-
locale) instead of in C reduces the run time system interrupt handler overhead from 500 clock cycles to close to
100 clock cycles. We did not implement the event handler in asm-locale because the 3.44% total cost for a
99% confidence interval shown by the table above is sufficiently small. But if such an overhead is still too
high, the event handler can be implemented using the asm-locale to sharply reduce the overhead cost.

5.3. Sampling randomness

If the SU samples the user program at fixed time interval, there is a possibility that it only samples instructions
that all happen to be floating points (or not floating points) resulting in inaccurate measurement indicating a
peak (or zero) MFLOPS performance. Such a measurement happens if the user program is uniform and hap-
pens to perfectly coincide with the time interval that the SU uses. Although this is very unlikely, we try to sim-
ulate randomness in the sampling to avoid this problem and at the same time to allow the use of statistical
methods to measure the accuracy of our measurements. Furthermore, Hoeffding's formula on the previous
page requires random sampling.

Sampling randomness can be accomplished by calling a random number generator at the end of each sampling
and assign the returned random number as the time interval until we perform the next sampling. This, however,
adds a few hundred clock cycles to the cost of a sampling. An alternative approach is to precompute a table of
random intervals. The sampling unit cycles through the table, and sets the next sampling time to be the current
time plus the content of the current entry of the table. There arc two problems with this approach. The first
problem is the overhead of constructing the table. This overhead, however, will be amortized over the length of
time the program executes. The second problem, which is more severe, is the space required for the table. As
the table above suggests, to get a 99% confidence interval, we need a sample size of approximately 1,100
instructions for each second of execution. Storing the table entry as integer requires 4.4KB of memory, if we
reuse the table during the entire execution time.

Alternatively, we can simulate randomness here by varying the tine interval as a function of the value of the
third from the last bit of the program counter. That is, the time to do the next sampling is first initialized to a
certain value. At each sampling, we either increment or decrement the time interval for the next sampling by
looking at the third from the last bit of the program counter, ensuring that the value stays within the interval of
one half to twice the initial value. Since a priori the user program's execution flow is unknown, and the event
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handler may be first invoked at any position in the user program, the probability that we either decrement or
increment the initial value approximately equals the probability that the program counter's third from the last
bit is either zero or one. The program counter is incremented by the size of the instruction. Since an iWarp
instruction is either 4 bytes or 12 bytes, the program counter is incremented by either 4 or 12, resulting in
always toggling the third from the last bit. Thus, we expect that the probability that we either decrement or
increment the time interval for the next sampling is approximately one half. Section 6.1. discusses our verifica-
tion of this simulation of randomness, as well as our comparison of this approach to the table-based approach
above.

5.4. Communication for data collection

The collection unit (CU) must broadcast a message to the participating processors to request the processors'
floating point operation counts. There are four ways to accomplish this communication:

5.4.1. SRU printf

The CU uses the slow SRU wires to broadcast a request to the processors and to receive the responses. The
overhead per processor is approximately 70 ms per collection, leaving enough slack for one collection per sec-
ond. This approach does not take away any of the processor's communication resources. Although it will work
with programs that use various communication supports, this approach does not work with programs that use
the SRU (such as those that use SRU-based barrier synchronization[3]). Furthermore, this approach requires
that the CU be either on the SIB processor (which connects the iWarp processors to the Sun front end) or on
one of the processors.

5.4.2. Dedicated ring (pathlib or PCS)

The iwmeter can require the support of a dedicated ring (formed using pathlib or PCS[4] ) to broadcast collec-
tion requests and to receive the processors' responses. This approach is faster than the other approaches dis-
cussed here, and it incurs lower overhead. The disadvantages are that it requires two dedicated queues, leaving
only 14 queues for the user, and that the CU still requires either the SIB or one of the processors. Further, if the
ring is PCS-based, this tool can only be used for PCS programs.

5.4.3. Message passing (dmsg)

The dmsg[6] deposit message passing support can also be used by the CU to directly deposit the request to the
processors, and the processors can directly deposit the responses to the CU. This approach is very simple to
program, and the overhead of a deposit is very low (approximately 50 clock cycles). The problem is that it
reserves 5 queues for communication. Similarly, it requires that the CU be either on the SIB or one of the pro-
cessors.

5.4.4. Remote procedure call (RPC)

The iWarp RTS supports an RPC interface from the host processor to the processors that allows one to export
the content of a certain memory location on a certain processor. Using this support, the CU can sit on the host
processor, instead of requiring the SIB or one of the processors, and read the content of the memory where the
SU maintains its floating point operation count. This approach uses only the RTS queues, thus does not take
away any communication resources from the user. The SU is now completel, independent; it does not even
need to explicitly respond to the CU's request. The overhead associated with the RPC is relatively high, but is
still feasible within the time window of one collection per second.

The iwmeter uses the RPC mechanism, which clearly has the advantage over the other mechanisms.



6. Evaluation

We evaluated the iwmeter on two grounds. First, how good is our approximation of sampling randomness?
Second, how accurate are the MFLOPS performance numbers that the iwmeter reports?

6.1. Sampling randomness

Sampling randomness is obtained by constructing a table of random sampling intervals. This table is generated
in the initialization phase by invoking a random number generator. The next sample is taken at an interval given
by the next entry in the table, returning to the beginning of the table once the last entry is used. The size of the
table is approximately 1,300 entries, corresponding to roughly the number of samples performed in one second.

To avoid the space cost of the table, we simulate sampling randomness .y incrementing or decrementing the
time interval to perform the next sample depending on whether the third from the last bit of the program countw.
is odd or even, expecting that the bit used has an equal probability of being odd or even. We verified this ex-
pectation by maintaining a count that gets incremented if the bit is odd and decremented if the bit is even. If the
expectation is true, then the count is zero at the end of the program. Sampling test programs a: approximately
1,.300 times per second, we obtained the following result: the average difference in the number of odd versus
even is 4.49, with a standard deviation of 0.04. That is, on average, the number of times that the third from the
last bit is odd differs from the number of times it is even by less than 5 out of approximately 1,300 samples,
giving a P(odd) = 0.5015 - 0.4985 = P(even). However, the sampling intervals generated by this optimization
fail to pass the chi-square and Kolmogorov-Smirnov testing of their randomness.

6.2. Measurement accuracy

To measure the accuracy of iwmeter, we wrote a program that generates programs with known floating point
performance. Each program is mainly composed of an outer loop that takes much less than one second. Inside
the loop there are two loops: one that is composed of solely C&A instructions, and one that is composed of
solely non-floating point instructions. If the ratio of the C&A loop and the non-floating point loop is 0.55, then
the expected performance of the program is 11 MFLOPS on each processor. We compare the expected number
and the average of the reported numbers over a period of approximately 35 seconds for 41 programs with
expected performance numbers ranging from 0 to 20 MFLOPS. The sample size is approximately 1,300 sam-
ples per second, giving a 99% probability that the reported performance number is within I MFLOPS of the
true performance.

Using the optimization described above, the following figure gives, for each of the 41 programs, the average
difference between the expected and the observed MFLOPS values, as well as the range of the differences:
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Figure 2. Error values (in MFLOPS) using the 3rd from the last bit to determine the next sampling.
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The figure above shows that the tool is indeed very accurate. The mean of the errors is 0.001 MFLOPS, with a
standard deviation of 0.051 MFLOPS. The ranges of errors are small, varying from 0 (when there is no floating
point operation in the loop) to 0.17 MFLOPS. In all but seven cases, these ranges covered the expected
MFLOPS.

Using the same 41 programs but with the sampling interval table, the ranges of the differences between the
expected and the observed MFLOPS values are shown in the following figure:
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Figure 3. Error values (in MFLOPS) using a table of random sampling intervals

This figure shows that the result is even better than the previous approach. The mean of the errors is 0.0018
MFLOPS, which is only slightly greater than the previous approach, but the standard deviation is much
smaller (0.0026 MFLOPS). The ranges are also much tighter, varying from 0 to only 0.0075 MFLOPS, with all
ranges covering the expected MFLOPS performance.

In conclusion, the approach of using a table of randomly-generated sampling intervals provide smaller rangcs
of errors, while only slightly increasing the mean of the errors. Furthermore, this approach allows us to use the
theoretical result discussed in the previous section to define the level of confidence of our estimate.



7. Conclusions

The need for a tool to monitor the MFLOPS performance of a program running on a parallel system like the
iWarp is satisfied by a program such as the iwmeter described in this paper. The iwmeter tool has a well-
defined, high accuracy. It is designed and implemented without extra communication resources (other than
those required by the run time system) with a very low computation cost. It is also a general and robust perfor-
mance monitor, because it allows for monitoring of all iWarp programs regardless of the communication mod-
els of the programs.

The iwmeter is nonintrusive; at any given second it allows for approximately 96.6% of user code execution for
a sampling rate of approximately 1,100 samples per second, while still maintaining very high accuracy. The
graphical user interface is X-based, resulting in an easy to understand interface. Lastly, the library support pro-
vided to use the iwmeler is the easiest possible without requiring full and direct support of the run time system.

The iwmeter is currently implemented to measure MFLOPS performance. Various other measurements can be
accommodated within the framework of the tool with very little modifications. For example, if one wants to
monitor memory accesses, the underlying sampling and reporting mechanisms that the iwmeter provides will
sufficiently support such a measurement. The only change will be in the section of code that categorizes the
instruction being sampled and update the appropriate counts. Thus, the iwmeter provides an underlying model,
design, and implementation for monitoring of program characteristics so long as information about these char-
acteristics can be gathered by examining the instructions sampled from the user code. The requirements for an
effective tool for such measurements will be identical to those faced by the iwmeter, and thus are still satisfied
by the iwmeter.
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Appendix A. Usage and example
The relevant files of the iwmeter tool can be found in /afs/cs/project/iwarp/member/egintingriwmeter and its

subdirectories.

A.1. Usage

Currently, the iwmeser tool is composed of a library, a collection daemon, and an X Windows program. To use
the iwmeter tool to monitor the MFLOPS performance of the user's program, the user needs to:

A.1.1. In the user program:

* Include <mf lops. h>

* Call mf lops cellinit () as an initialization procedure at the beginning of the user code

* Link with libmflops. a

A.1.2. To monitor the results:

"* Run the iwmeter daemon on the SUN machine that hosts an iWarp system:

<user@daemon-machine>% rpc.iwmeterd <iwarp-hostname>

"* From a user workstations, the user needs to run the program iwmeter to perform the monitoring:

<user@workstation>% iwmeter <daemon-machine-name>

"• Run the program that has been compiled as described above.
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A.2. Example

The following example is generated by the test program generator and used for verification of the iwmeter:

/*

' Generated by gen-test.
-I

#include <stdio.h>

#include <mflops.n>
#include "asm-loop.hl

main(argc, argv)

int argc;
char *argv[];

int t;

mflops cell inito;

t = 5000;

while (t--)
asm_loop();
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Appendix B. User interface

The figure below is a screen dump of the user interface of the iwmerer. The user can select whether to display
the performance data of all participating processors or just the entire system summary. Future improvement
may include selectively activating/deactivating only the processors that the user wants to monitor.

The user may also select the time interval the report is updated. The default is one second. Additionally, the
iwmeter can display the performance numbers of an instant or compute the moving average of the past several
numbers.

Figure 4. The iwmeter user interface
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